Recent advances in operator learning theory have improved our knowledge about learning maps between infinite dimensional spaces. However, for large-scale engineering problems such as concurrent multiscale simulation for mechanical properties, the training cost for the current operator learning methods is very high. The article presents a thorough analysis on the mathematical underpinnings of the operator learning paradigm and proposes a kernel learning method that maps between function spaces. We first provide a survey of modern kernel and operator learning theory, as well as discuss recent results and open problems. From there, the article presents an algorithm to how we can analytically approximate the piecewise constant functions on R for operator learning. This implies the potential feasibility of success of neural operators on clustered functions. Finally, a k-means clustered domain on the basis of a mechanistic response is considered and the Lippmann-Schwinger equation for micro-mechanical homogenization is solved. The article briefly discusses the mathematics of previous kernel learning methods and some preliminary results with those methods. The proposed kernel operator learning method uses graph kernel networks to come up with a mechanistic reduced order method for multiscale homogenization.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Although understanding and characterizing causal effects have become essential in observational studies, it is challenging when the confounders are high-dimensional. In this article, we develop a general framework $\textit{CausalEGM}$ for estimating causal effects by encoding generative modeling, which can be applied in both binary and continuous treatment settings. Under the potential outcome framework with unconfoundedness, we establish a bidirectional transformation between the high-dimensional confounders space and a low-dimensional latent space where the density is known (e.g., multivariate normal distribution). Through this, CausalEGM simultaneously decouples the dependencies of confounders on both treatment and outcome and maps the confounders to the low-dimensional latent space. By conditioning on the low-dimensional latent features, CausalEGM can estimate the causal effect for each individual or the average causal effect within a population. Our theoretical analysis shows that the excess risk for CausalEGM can be bounded through empirical process theory. Under an assumption on encoder-decoder networks, the consistency of the estimate can be guaranteed. In a series of experiments, CausalEGM demonstrates superior performance over existing methods for both binary and continuous treatments. Specifically, we find CausalEGM to be substantially more powerful than competing methods in the presence of large sample sizes and high dimensional confounders. The software of CausalEGM is freely available at https://github.com/SUwonglab/CausalEGM.
translated by 谷歌翻译
Unsupervised foreground-background segmentation aims at extracting salient objects from cluttered backgrounds, where Generative Adversarial Network (GAN) approaches, especially layered GANs, show great promise. However, without human annotations, they are typically prone to produce foreground and background layers with non-negligible semantic and visual confusion, dubbed "information leakage", resulting in notable degeneration of the generated segmentation mask. To alleviate this issue, we propose a simple-yet-effective explicit layer independence modeling approach, termed Independent Layer Synthesis GAN (ILSGAN), pursuing independent foreground-background layer generation by encouraging their discrepancy. Specifically, it targets minimizing the mutual information between visible and invisible regions of the foreground and background to spur interlayer independence. Through in-depth theoretical and experimental analyses, we justify that explicit layer independence modeling is critical to suppressing information leakage and contributes to impressive segmentation performance gains. Also, our ILSGAN achieves strong state-of-the-art generation quality and segmentation performance on complex real-world data.
translated by 谷歌翻译
Multiview self-supervised representation learning roots in exploring semantic consistency across data of complex intra-class variation. Such variation is not directly accessible and therefore simulated by data augmentations. However, commonly adopted augmentations are handcrafted and limited to simple geometrical and color changes, which are unable to cover the abundant intra-class variation. In this paper, we propose to extract the underlying data variation from datasets and construct a novel augmentation operator, named local manifold augmentation (LMA). LMA is achieved by training an instance-conditioned generator to fit the distribution on the local manifold of data and sampling multiview data using it. LMA shows the ability to create an infinite number of data views, preserve semantics, and simulate complicated variations in object pose, viewpoint, lighting condition, background etc. Experiments show that with LMA integrated, self-supervised learning methods such as MoCov2 and SimSiam gain consistent improvement on prevalent benchmarks including CIFAR10, CIFAR100, STL10, ImageNet100, and ImageNet. Furthermore, LMA leads to representations that obtain more significant invariance to the viewpoint, object pose, and illumination changes and stronger robustness to various real distribution shifts reflected by ImageNet-V2, ImageNet-R, ImageNet Sketch etc.
translated by 谷歌翻译
自动扬声器验证(ASV)已在现实生活中广泛用于身份认证。但是,随着语音转换的快速发展,语音合成算法和记录设备质量的提高,ASV系统很容易受到欺骗攻击。近年来,有关合成和重播语音检测的许多作品,研究人员提出了许多基于手工制作的特征的反欺骗方法,以提高合成和重播语音检测系统的准确性和鲁棒性。但是,使用手工制作的功能而不是原始波形将丢失某些信息进行抗旋转,这将降低系统的检测性能。受图像分类任务中Convnext的有希望的性能的启发,我们将Convnext网络体系结构相应地扩展到SPOOF攻击任务,并提出了端到端的反欺骗模型。通过将扩展体系结构与频道注意块相结合,提出的模型可以专注于最有用的语音表示子频段,以改善反欺骗性的性能。实验表明,对于ASVSPOOF 2019 LA评估数据集和PA评估数据集,我们提出的最佳单个系统可以达到1.88%和2.79%的误差率,这证明了该模型的抗SpoFofing能力。
translated by 谷歌翻译
来自社交媒体的用户生成的内容是以多种语言产生的,在技术上挑战,将讨论的主题与不同文化和地区的一个域进行比较。它与全球化世界中的域名相关,例如市场研究,来自两个国家和市场的人可能对产品有不同的要求。我们提出了一种简单,现代化,有效的方法,用于建立一个具有情绪分析的单一主题模型,能够同时覆盖多种语言,基于预先接受的最先进的深度神经网络,用于自然语言理解。为了展示其可行性,我们将模型应用于报纸文章和用户评论,即有机食品和相关的消费行为。主题与语言相匹配。此外,我们获得了高比例的稳定和域名相关主题,主题与其各自的文本内容之间有意义的关系,以及社交媒体文档的可解释表示。营销可能会从我们的方法中受益,因为它提供了从全球各地的不同市场地区解决特定客户兴趣的易于使用手段。为了再现性,我们提供了我们研究的代码,数据和结果。
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
Semantic communication (SemCom) and edge computing are two disruptive solutions to address emerging requirements of huge data communication, bandwidth efficiency and low latency data processing in Metaverse. However, edge computing resources are often provided by computing service providers and thus it is essential to design appealingly incentive mechanisms for the provision of limited resources. Deep learning (DL)- based auction has recently proposed as an incentive mechanism that maximizes the revenue while holding important economic properties, i.e., individual rationality and incentive compatibility. Therefore, in this work, we introduce the design of the DLbased auction for the computing resource allocation in SemComenabled Metaverse. First, we briefly introduce the fundamentals and challenges of Metaverse. Second, we present the preliminaries of SemCom and edge computing. Third, we review various incentive mechanisms for edge computing resource trading. Fourth, we present the design of the DL-based auction for edge resource allocation in SemCom-enabled Metaverse. Simulation results demonstrate that the DL-based auction improves the revenue while nearly satisfying the individual rationality and incentive compatibility constraints.
translated by 谷歌翻译